Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions
نویسنده
چکیده
We study connections between Dykstra’s algorithm for projecting onto an intersection of convex sets, the augmented Lagrangian method of multipliers or ADMM, and block coordinate descent. We prove that coordinate descent for a regularized regression problem, in which the penalty is a separable sum of support functions, is exactly equivalent to Dykstra’s algorithm applied to the dual problem. ADMM on the dual problem is also seen to be equivalent, in the special case of two sets, with one being a linear subspace. These connections, aside from being interesting in their own right, suggest new ways of analyzing and extending coordinate descent. For example, from existing convergence theory on Dykstra’s algorithm over polyhedra, we discern that coordinate descent for the lasso problem converges at an (asymptotically) linear rate. We also develop two parallel versions of coordinate descent, based on the Dykstra and ADMM connections.
منابع مشابه
Supplement to: “Dykstra’s Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions”
متن کامل
Penalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملCis400/401 Final Project Report
The rise of ‘big data’ and large-scale machine learning has created an increasing need for distributed optimization.dual descent and the alternating Most of the current literature has focused on coordinate descent, a prominent distributed optimization technique, due to its simplicity and effectiveness. We focus on implementing two other optimization techniques distributed dual descent and the a...
متن کاملContinuous Relaxation of MAP Inference: A Nonconvex Perspective
In this paper, we study a nonconvex continuous relaxation of MAP inference in discrete Markov random fields (MRFs). We show that for arbitrary MRFs, this relaxation is tight, and a discrete stationary point of it can be easily reached by a simple block coordinate descent algorithm. In addition, we study the resolution of this relaxation using popular gradient methods, and further propose a more...
متن کاملA Local Analysis of Block Coordinate Descent for Gaussian Phase Retrieval
While convergence of the Alternating DirectionMethod of Multipliers (ADMM) on convex problems is well studied, convergence on nonconvex problems is only partially understood. In this paper, we consider the Gaussian phase retrieval problem, formulated as a linear constrained optimization problem with a biconvex objective. The particular structure allows for a novel application of the ADMM. It ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017